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1. INTRODUCTION 

The purpose of this article is to clarify the relations between two 
logics. Namely, the so-called quantum logic and linear logic. Since Birkhoff 
and von Neumann (1936) wrote the paper, "The logic of quantum mechan- 
ics," quantum logic has been understood as the logic of the lattice of closed 
subspaces of a Hilbert space; it is well known that such lattices are 
orthomodular lattices. For some time the problem of dealing with these 
lattices was almost forgotten by mathematicians until Mulvey (1986) 
introduced the concept of a quantale. Various mathematicians have be- 
come interested in such kinds of lattices. These lattices are complete lattices 
with a noncommutative binary operation preserving all suprema. It was 
claimed that such kinds of lattices will provide a new foundation for the 
logic of quantum mechanics. Mulvey and Pelletier (1991) introduced the 
notions of a Gelfand quantale and a von Neumann quantale in order to 
explain the connections between quantales and the lattice of the closed 
subspaces of a Hilbert space. They used only half of the required informa- 
tion we need in order to define an orthomodular lattice. In fact, they used 
only the orthocomplement structure of the lattice of closed subspaces of a 
Hilbert space. We do not want to enter into a polemic on whether the 
so-called orthomodular law is important or not. We just mention the work 
by Loomis (1955) on dimension theory of operator algebras and the book 
by Kalmbach (1983), where the reader can find not only some basic results 
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concerning orthomodular lattices, but also a good bibliography on this 
subject. Our main concern in this article, is to consider the whole structure 
of the lattice of the closed subspaces of  a Hilbert space and investigate 
its relation to the concept of a quantale. We shall do this by looking at a 
more general situation. We shall see that the quantales introduced by 
Mulvey and Pelletier are a special case of an involution semigroup satisfy- 
ing some extra properties. Girard (1989) raised the question of  whether 
linear logic has something to do with quantum mechanics. In his original 
paper (Girard, 1987) he introduced a lattice which after the work of Yetter 
(1991) is called now a Girard quantale. We shall see that this kind 
of quantale is again a special case of an involution semigroup. More than 
30 years ago, Foulis (1960) introduced the notion of a Baer ,-semigroup 
and he proved that any orthomodular lattice can be viewed as a Baer 
,-semigroup. 

After all these isolated results we feel it is time to unify all the concepts 
and introduce an algebraic structure which captures all these results. The 
paper is divided as follows. In Section 2 we introduce the notion of an 
orthomodular lattice and we show that the lattice of all endofunctors 
having a right adjoint forms a Baer ,-semigroup. In Section 3 we look at 
the concept of  a Girard quantale and we show how can we see this 
quantale as an involution semigroup. Section 4 deals with the concepts 
introduced by Mulvey and Pelletier; we shall see how they can generate an 
involution semigroup. We shall in fact draw attention to involution posets 
in the whole paper. 

2. O R T H O C O M P L E M E N T E D  LATTICES AND O R T H O M O D U L A R  
LATTICES 

Instead of  working only on the special case of the closed subspaces of 
a Hilbert space, we shall introduce the general notion of  an orthomodular 
lattice; since we shall deal also with orthocomplemented lattices, we intro- 
duce both definitions. 

Definition 2.1. Let L be an arbitrary lattice. We say L is an orthocom- 
plemented lattice if there is a unary operation (denoted by _L) of  L 
satisfying the following properties: 

1. a •177 = a 
2. ( a v b )  •  •  • 
3. a v a - L = l  
4. a A a •  
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for all a, b~L. We shall say L is an orthomodular lattice if in addition it 
satisfies the orthomodular law: Given two arbitrary elements a, b~L such 
that a < b the following identity holds: 

b = a  v ( a l  ^ b) 

Clearly, the obvious example is the lattice of  closed subspaces of  a 
Hilbert space H [we shall denote this lattice by Cg(H) in the rest of  this 
paper]; see, for instance, Kalmbach (1983) for a proof  of  this fact. The last 
identity is called the orthomodular law instead of the modular law, because 
the only Hilbert spaces satisfying the modular law are those having finite 
dimension (as vector spaces); see, for instance Halmos (1957) for a proof  
of this fact. 

(~(H) is not only a lattice, it is a complete lattice. Therefore we have 
the concepts of  complete orthocomplemented lattices and complete ortho- 
modular lattices, where condition 2 is replaced by ( V i ~ a i ) •  = Ai~za~-. 
We are now ready to introduce the main operation of  this lattice. This 
operation was first introduced by Finch (1970) in a different context. 
Suppose L is an arbitrary ortholattice and a is an arbitrary element of  L; 
then we define the following endomorphism of  L, denoted by ~b a : L  ~ L: 

~o(b)  = (b v a • ^ a 

for any element b in L. In Roman and Rumbos (1988, 1991, n.d.-a) the rhs 
of  the last identity was introduced as a binary operation of L, but we shall 
see it is better to consider this as an arrow. In Kalmbach (1983) there is a 
characterization of  when an ortholattice is in fact an orthomodular lattice 
in terms of  ~b,. For  the sake of  completeness we state this as a lemma: 

Lemma 2.2. Let L be an arbitrary ortholattice. A necessary and 
sufficient condition for L to be an orthomodular lattice is the following 
condition: 

VbEL, b < a  ~ ~ba(b)=b 

for all elements a in L. 

For  the rest of this section we shall assume L to be an orthomodular 
lattice. We now list some properties of the arrow ~a. 

Proposition 2.3. The arrow ~,  : L -~ L satisfies the following: 

1. ~ ,  is idempotent. 
2. ~a has a right adjoint, namely ~ : L -~ L given by the rule 

~ a ( b ) = ( a ^ b )  v a  • 

3. For  any element b of  L the following is true: 

~a((~,(b•177 < b 
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Proof. See Romhn and Rumbos (1988) for a p roof  of  the first two 
properties. We shall look at the third claim. An easy calculation shows that 
the lhs of  condition 3 is equal to (a ^ b) J- ^ a, which clearly is less than or 
equal to a, using the fact ~a(a -L) = 0. �9 

Remark. The arrow ffa defined in condition 2 is very important  in 
quantum mechanics; it is called the Sasaki hook. Notice also we do not 
need to assume any completeness property of  L to prove Proposition 2.3. 
By condition 2, we know that if L has arbitrary joins, then ~b a will preserve 
it. Condition 3 is very important;  in fact this is the key property for the 
representation of any orthomodular  lattice as a Baer ,-semigroup. We 
begin first with some definitions. 

Definition 2.4. By an involution semigroup we mean a semigroup S 
equipped with a unary operation ,: S ~ S such that for all x, y elements of  
S, (xy)* = y 'x* .  We shall say x e S  is a projection if x = x*. We denote by 
P(S) the set of  projections of  S. 

One natural question is, How can we see an involution poset P as an 
involution semigroup? The idea of doing this is to look at the lattice of  all 
endomorphisms of P denoted by R(P) having a right adjoint. In order for 
this paper to be self-contained, we introduce the concept of  an involution 
poset. 

Definition 2.5. By an involution poset P we mean a poset P together 
with a unary operation ,: P ~ P such that for any elements a, b of  P we 
have: 

1. a** = a. 
2. I f  a -< b, then b ,  <- a , .  

Suppose then we have an involution poset (P, , ) ;  we are now ready to 
introduce the main definition of  this paper, as we said before we want to 
see how we can think of an involution poset as an involution semigroup, 
We have then the following: 

Definition 2.6. Let (P, , )  be an involution poset. Suppose f ,  g: P --* P 
are two arbitrary endomorphisms of  P, then we say f is dual to g iff the 
following inequalities hold: 

f ( g ( a , ) , )  < a, g ( f ( a , ) , )  < a 

for any element a of  P. 

The reader perhaps may ask for examples of  this kind of arrow; the 
next result will give a nice way of getting examples. We state this as the 
following: 
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Proposition 2. 7. Let P be an involution poset. Suppose f ,  g: P ~ P are 
two arbitrary endomorphisms of  P; then the following conditions are 
equivalent: 

1. f is dual to g. 
2. f has a right adjoint 

Proof. Suppose that f :  P - - , P  has a dual g: P ~ P ,  consider the endo- 
morphism of P, h, given by the following rule: if a ~P, then h(a) = g (a , ) , .  
We will see that h is a right adjoint to f.  

Indeed, suppose f (a )  < b; then b ,  < f ( a ) ,  and g(b,)  <- g ( f ( a ) , )  and 
hence g ( f ( a ) , ) ,  < g ( b , ) ,  = h(b), but g ( f ( a ) , ) = g ( f ( a * * ) , ) =  <a , ,  since 
g is dual to f and we have therefore h(f(a))-< a** = a; i.e., a <-h(b). 
conversely, if a < h(b), then f (a )  < f ( g ( b , ) , )  < b. Hence, we have s h o w n f  
is left adjoint to h. 

A similar argument shows that if f has a right adjoint h, then 
endomorphism g defined by g(a) = h ( a , ) ,  (for a~P)  is dual t o f .  [] 

Remark. Notice we do not need to assume any completeness property 
for the poset P. In fact, if we know that an arbitrary endomorphism f of 
P has a dual, then f will preserve all suprema existing in P. This result  
contrasts with the considerations made by Mulvey and Pelletier (1991); see 
also Section 4 of this paper. 

We will apply now all these results to the concrete case of  an arbitrary 
orthomodular lattice. First of all, suppose L is an arbitrary orthomodular 
lattice L; then clearly L is an involution poset; the involution is given by 
the unary operation _1_: L--*L, which we will denote in the rest of  the 
section as , .  Denote by R(L) the set of  all endomorphisms of L having a 
dual arrow. The reader might ask if there is a nontrivial example of  such 
an endomorphism. We shall see that there are many elements of  R(L), in 
fact, as least as many elements as in L. 

Lemma 2.8. Let L be an arbitrary orthomodular lattice. If a denotes 
an arbitrary element of  L, then the arrow q5 a : L ~ L is self-dual. 

Proof. Indeed, by Proposition 2.3 we know that q5 n is idempotent and 
has a right adjoint, namely ~, .  Now, by the last proposition we know that 
the arrow g: L ~ L  defined by g(b) = f f / a ( b , ) , ,  for any b in L, is a dual 
arrow for ~b~. An easy calculation shows that h is equal to ~ .  [] 

In particular, there is natural morphism from L into R(L), taking any 
element a of L to ~,.  Moreover, R(L) is a Baer ,-semigroup. A Baer 
�9 -semigroup (S, K) is an involution semigroup S together with a focal ideal 
K. This means K is a two-sided ideal and for every element x of S the set 
{yeSlxy~k } is a principal ideal. In our case the focal ideal is {0}. We can 
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state now the main result of this section, which is due to Foulis; see Foulis 
(1960) for details and comments. 

Theorem 2.9. (Foulis). Let L be any orthomodular lattice; then (R(L), 
{0}) is a Baer ,-semigroup and the correspondence a ~ ~b~ between L and 
P(R(L)) is an isomorphism preserving the orthocomplementation. [] 

We shall call this the Foulis representation theorem. Notice that we do 
not need to assume L is a complete orthomodular lattice. We shall look now 
at the similarities between orthomodular lattices and Girard quantales. 

3. GIRARD QUANTALES 

Girard quantales were introduced by Yetter (1991), the main purpose 
apparently to generalize the construction made by Girard (1987). Later 
Rosenthal (1991) wrote a paper concerning Girard quantales; his results 
are contained in Rosenthal (1990), where the reader can find some com- 
ments and examples. Barr (1991) gave as an example of his general 
construction of getting models of linear logic the case when we take a 
complete lattice, which is precisely what Rosenthal did in his paper. Again 
for the sake of completeness let us introduce the concept of a Girard 
quantale. First of all, recall that a quantale Q is a complete lattice endowed 
with a binary operation &, which is not necessarily commutative, such that 
the operation & commutes with arbitrary suprema on each side; in partic- 
ular, this operation; viewed as a functor, has two right adjoints, which are 
denoted in general by ~ t  and ~ r, where the subscripts denote which right 
adjoint we are taking. We have now the following: 

Definition 3.1. By a Girard quantale Q we mean a quantale having a 
cyclic dualizing element d. That is to say, there is an element d of Q such 
that for any element a of Q the following identities hold: 

1. a ~ l d = a  ~rd.  
2. ( a ~ d ) ~ d = a .  

The important thing about this element d of Q is that the operation 
( - )  ~ d becomes an involution for Q in such a way that the following 
identities can be shown; see Rosenthal (1990) for a proof of these facts (we 
keep our notation for the involution): For any elements a, b of Q: 

1. (a v b)* = a* ^ b*. 
2. (a ^ b)* = a* v b*. 
3. a ~ t b  =(a&b*)*.  
4. a -".r b = ( b * & a ) * .  
5. 1"---0. 
6. 0 " = 1 .  
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First of  all, consider the similarities with the equations described for 
orthomodular lattices. These identities look complicated because we must 
remember which right adjoint we are taking. However, we can rethink these 
identities, taking again the lattice of  all endofunctors of Q having a right 
adjoint. Denote this lattice by R(Q) and consider the following elements of 
R(Q): 2a(X ) -=- a St. x and pa(X) = X & a, where a is a fixed element of  Q and 
x is an arbitrary element of Q; we have then the following: 

Lemma 3.2. The functors 2,, p, : Q --+ Q are dual. 

Proof. Of course we know that these functors have a dual by Proposi- 
tion 2.7. An easy calculation shows that 2o(p,(b*)*) -< b and pa()%(b*)*) < 
b, using the identities described above. 

We can apply then the results stated in the last section in order to get 
a Baer ,-semigroup. The only thing we need is to consider a focal ideal of  
R(Q). Notice again the crucial idea here is to consider the lattice of all 
endofunctors of  Q having a right adjoint, 

We shall look now at the case of Gelfand quantales and the relation 
with Baer ,-semigroups. 

4. GELFAND QUANTALES 

The concepts we shall discuss here were introduced by Mulvey and 
Pelletier (1991). The title of  the paper, "The quantization of  the calculus of  
relations," suggests that they in fact look at a new and different approach 
to the subject of  the lattice of  closed subspaces of  a Hilbert space. We want 
to point out that Lambek (n.d.) discusses carefully one of  the motivating 
examples of  Mulvey and Pelletier, namely the case of  relations of a given 
set. We shall look here at the second example they studied in their paper. 
We introduce several technical definitions in order for the reader to 
understand all the concepts; we shall follow Mulvey and Pelletier's ap- 
proach. First of  all they introduce the notion of an involutive quantale; this 
is nothing but a quantale Q together with an involution ,: Q ~ Q ;  of  
course this unary operation must satisfy the following identities: For  any 
pair of elements a and b of Q: 

1. (a*)* = a. 
2. ( a & b ) * = b * & a * .  

Here they make the distinction that a quantale has a unit for the operation 
& and the top element of Q. Hence if Q has a unit e they must assume 
e * =  e. Now, given any quantale Q and an element a of Q we say a is 
right-sided if for every element b of  Q the following holds: 

a & b < a  
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Denote by D(Q) the set of all right-sided elements of a quantale Q. We 
can now introduce the notion of a Gelfand quantale. 

Definition 4.1. A unital quantale Q is a Gelfand quanta& if Q is 
involutive and the right-sided elements of Q satisfy the following property: 

a&a* & a = a  

In their paper, they discuss in detail the case when we take as a basic 
example the lattice of all endofunctors of C(H) having a right adjoint. We 
know already how to generate a Baer ,-semigroup from this lattice. One 
natural question is: What are the relations between all the concepts they 
introduced and the constructions we described in Section 2? Well, as we 
pointed out in the introduction, the big difference between the two ap- 
proaches is that they consider only complete orthocomplemented lattices. 
Indeed, we recall now the basic constructions by Mulvey and Pelletier 
introduced in their paper. In order to do that, we need to start with a 
complete orthocomplemented lattice S and consider the lattice of all endo- 
functors of S having a right adjoint, which we denote by R(S). Mulvey and 
Pelletier claim that R(S) has an involution given by the following rule: if 
c~eR(S), then ~b* is given by 

V t . . . (I)  
q~(t) ~ s .L 

where J_: S--. S denotes the orthocomplement of S. This definition looks 
complicated and in fact is difficult to handle. By Proposition 2.7, we know 
that if a functor has a right adjoint, then it has a dual. Hence there must 
be some relation between these two concepts. We shall see that they are 
actually the same, as shown in the next proposition: 

Proposition 4.2. Let S be any complete orthocomplemented lattice and 
consider the lattice R(S) of all endofunctors having a right adjoint. Then 
given any element ~b of R(S), the function defined by (I) is the dual of q~. 
In particular, R(S) is nothing but the lattice of all endofunctors having a 
dual. 

Proof. We must check the conditions of Definition 2.6. First of all, 
notice that if s~S, then it is clear that qS((~b *s) ") _< s • simply because 
[4~*(s)] • = ~/~t)~si  t. Now, ~b*((~b*s) • - s j- holds since the lhs of the last 
inequality can be written as follows: 

~*((~bs) j-) = A t ~-. . .  (ii) 
49(s --) :- -~ 4~(t) • 

Hence, ~b* is the dual of ~b and the proof is complete. II 
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We can say now what the real difference is between Mulvey and 
Pelletier's approach and the results stated in Section 2 of  this paper. First 
of all they forgot to consider the following inequality: q~*((~bs) • < s • As 
we pointed out in Section 2 the main advantage of considering the dual of  
an endofunctor is that you have a very simple way of constructing an 
involution semigroup. Moreover, when we are dealing with an orthomodu- 

lar lattice it is even better, since we get a Baer .-semigroup for free and the 
original lattice can be embedded in a very natural way by taking the left 
adjoint of the Sasaki hook. Notice also that we never need any complete- 
ness property; for them this is crucial and this is the main reason they start 
with a complete orthocomplemented lattice. 

As a corollary of  all these results, we think the best way of  studying all 
these kinds of  lattices is by taking the general framework: the lattice of all 
endofunctors having a right adjoint which we know is equivalent to the 
lattice of  all endofunctors having a dual. Also, the dual of a functor and 
the orthocomplement operation of  the given lattice have a very close 
connection which we hope is now clear. 
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